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By Adolf Busemann
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INTRODUCTION

In the first paper for the Hydrodynamical Section of this Symposium about

Analytic Functions in Continuum Mechanics I like to return to an early and famous

application in classical hydrodynamics made by W. M. Kutta and N. E. Joukowsky

while studying the lift force created in two-dimensional flow by a perfect fluid.

The doubly connected region around a single profile in the infinite plane allows

for a circulatory motion, the intensity of which is not determined by immediate

boundary conditions. Nevertheless both these authors selected the same condition

of smooth flow at the sharp trailing edge of either the flat plate (Kutta) or the

special series of sharply edged Joukowsky profiles as the proper lift-controlling

element for the perfect flow, generally known as the "Kutta-Joukowsky Condition."

The smooth flow, however plausible it may appear, can only be a conjecture within

the theory of perfect fluids and the rigorous proof resulting from flow problems

with vanishing viscosity was added soon after by the boundary-layer theory of

L. Prandtl.

A similar problem is found in the modern magnetohydrodynamics of two dimen-

sions with a fluid having two properties to perfection, that is, vanishing vis-

cosity paired with vanishing electrical resistivity while an external magnetic

field is spread throughout the whole flow field. Regarding the distribution of

two fields, the velocity and the magnetic vectors, it may appear that there are

also two circulations around the profile undetermined, but, as is easy to con-

ceive, these two circulations are fortunately tied to each other and only one

combined circulation remains open and is responsible for any side force or lift.

Unfortunately the simplified treatment adopted in this paper is a linearized

approach to any lift-controlling elements of the body shape. Therefore, the ease

to find a large variety of illustrative examples must be relied upon to hope that

the linearized method may illuminate the problem sufficiently to disclose the

magnetohydrodynamical generalization of the Kutta-Joukowsky as a similarly plaus-

ible conjecture.

In this paper,_a short derivation of the differential equations and finally

their specializatio N to two-dimensional flow will be_g_ven. __mmediately there-
. • r_ j •

after, the general solut&on will be produced just as in my von Karman 80th

Anniversary Lecture, 1961._t is exactly this step that led me to believe that
its discussion at this Symposium might be appropriate._ After showing a couple of

examples in figures and pointing out their essential features, some conclusions

about the lift-controlling elements will be added.
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SYMBOLS

B,b

C

E

F,f

i

J, J

L

P

Q(z, _,t)

q

S

t

V_v

x_y

P

1"

P

v

P

cl

cp

magnetic field and disturbance field measured as Alfv$n speed

(actually B/_-_)

profile chord

electric field

forces and volume forces

imaginary unit

electric current and current density

lift

pressure (divided by density)

function symbol for general solution

complex conjugate to analytic pressure

magnetic source strength

time

velocity vector and velocity disturbance

coordinates of flow plane

x + iy_ x - iy complex radius vector.

angle of attack

circulation

resistivity i/(o_)

permeability (generally suppressed)

kinematic viscosity

p + iq complex pressure function

fluid density (generally suppressed)

electric conductivity

magnetic flux function



stream function

Subscript s :

h hydrodynamic

m magnetic

DI_ERENTIALEQUATIONS

For the sole purpose of showing the changes of the Kutta-Joukowsky lift prob-
lem by electromagnetic interaction, it is permissible to take the namemagneto-
hydrodynamics literally by assuming an incompressible fluid with a constant elec-
tric conductivity value regarded as a scalar quantity. The essential and, in the
end, the only remaining variables of the flow field are the two vectors: the
magnetic induction B and the fluid velocity V. Both these vector fields have
lost part of their generality by the absence of divergences:

_iv B = o (1)

_.ivv --o (2)

the first equation being a natural property by selecting the magnetic inductions

as the representative of the magnetic field strength, the second equation being a

mere convenience resulting from the assumption of incompressible fluid.

The square of both field vectors __B 2 and _V 2 indicate in connection

with the proper constants in a magnetically permeable and incompressible fluid

magnetic pressures and hydrodynamic pressures. This property makes them commen-

surable in the form of the AlfvSn speed B_ compared with the velocity V. To

simplify the equations_ the density p and the permeability _ are set equal to

unity. Thus, the kinematic viscosity is th_ proper dissipativeconstant in this

system, while for the kinematic "resistivity" of electrical cut-rents, the recip-

rocal conductivity has to be divided by the permeability _:

= ! (3)

The influence on the hydrodynamic behavior of the movement across a magnetic

field is caused by the so-called Lorentz forces of electrodynamics and their

value f per _nit volume is dependent on the flow of an electric current with

the area intensity j as follows:

f = j x B (4)



however, any current reveals itself by the curling magnetic field around it

according to the equations:

j = curl B (_)

In combining these two expressions, the Lorentz forces immediately show how they

are anchored in the magnetic field stress tensor BiB m - _i-8i_B2:

f = (curl B) X B = B.VB - }VB 2 (6)

These forces enter the hydrodynamic equation as follows:

_V + V.W - vv2V
f - grad Ph = _-'_

(7)

The magnetic pressure Pm' the gradient of which is visible in the last term of

equation (6), offers a summation with the static pressure Ph to the combined

pressure p as indicated:

p = ph + pm = Ph + !B2
2

(8)

the gradient of which is simply:

-grad p = (_-_ +V.V-vV2)V - (B-V)B (9)

In the absence of imposed electric fields all currents j are caused by

induction in the fluid moving across the magnetic field or vice versa. Closed

currents are already assured when firstly the curl of the induced electric field

E is used:

c_lE=o_Z(VxB) 8B (io)
-

and secondly the electric resistivity _ of the fluid is a constant:

curl E = K curl j = curl(B × B) - 3B
_t

(ll)

Avoiding again the explicit appearance of the currents or the electric field, a

relation between the magnetic field and the velocity field results out of equa-

tion (Ii) combined with (5):



curl curl B = curl(B × B) _B
_t

(12)

After the usual transformation of all double cross products into two terms of dot

products, while considering that all divergences vanish according to equations (i)

and (2), the same relation can be written

-_V2B = B'_ - V'VB (13)
_t

All differential operations except one are carried out on the magnetic field. Two

operator packages in parentheses show this fact more clearly:

(14)

This final form of the electromagnetic equation has a strange resemblance to the

final hydrodynamic equation (9). The third terms of the large operators differ

only by their diffusion coefficients which are the viscosity w in hydrodynamics

and the resistivity K in electromagnetism. If such a difference, which of

course disappears for perfect fluids, should cause too much trouble, there is

always the possibility of finding a first solution for the fluid with v = _ or

the "equi-dissipative" fluid.

LINFARIZATION

Any differential operator parenthesis used in the final equations (9) and

(14) contains a term having one of the unknown field vectors as a coefficient, as

a reminder of the nonlinearity of both relations. In these terms lies the actual

difficulty of solving the complete problem by finding particular solutions. How-

ever, such an approach can be used after linearization of the differential equa-

tions for small disturbance flows. Since all terms in the operators represent

partial differentiations with respect to space or time, an undisturbed pattern

consisting of a parallel flow and a parallel magnetic field - though in different

directions, if preferred - vanishes identically if operated upon regardless of

any unknown field used inside the operators. Under these circumstances the lin-

earization requires the unknown disturbance fields to be always the object of the

operations, while the field inside the operators may as well be the unadulterated

undisturbed one.

If we designate with the former letters V and B the main fields and use

for the disturbances v and b as small additions to the parallel fields, the

operators in equations (9) and (14) are practically differential operators with

fixed coefficients in which the field vectors V and B are considered to be the

values V= and B_ sufficiently far away from the disturbing body, without being
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explicitly designated as such by a subscript. This linearization allows the

operators to be treated as commuting factors as long as they operate on the same

field v or b. The new form of the equations (9) and (14) due to linearization

is as follows:

(_+ V.V-vV2)v - (B.V)b = -grad p
(15)

+ v.v - _V2)b - (B.V)v = 0 (16)

The early equations (i) and (2) adapted to the new symbols for the disturbance

fields are:

div b _ 0 (la)

div v = 0 (2a)

It is obvious that these four equations, half of which are scalar equations while

the other half are vectors with the disturbance function p, have enough informa-

tion to allow the unknown fields to be determined.

REDUCTION TO TWO DIMENSIONS

Since the best hope of finding solutions is given in the two-dimensional

flow, the further treatment of these equations is carried out in the complex

plane in accord with W. M. Kutta and N. E. Joukowsky. The first convenience

resulting from the reduction to two dimensions is the existence of a scalar flux

function 9 for the magnetic field b and a scalar stream function _ for the

velocity field as integrals of the equations (la) and (2a). In the complex plane

z = x + iy with _ = x - iy the nabla operator is known to be

of any function written in the variables z and _. While a gradient can imme-

diatelybe written in nabla, the relation between flux functions or stream func-

tions and the vector field parallel to them only requires a multiplier ±i to

perform a rotation about ±9 0°. The vector fields are, therefore, easily related

to their flux integrals:



---i2 (is)v

While the equation (16) may be raised to the flux function level as follows:

(_ +V.V-_V2)_ - (B'V)* = 0 (16a)

the right-hand side of equation (15) is not quite suited to this treatment. But

the vanishing divergences of v and b spotted on the left-hand side discloses

p to be an analytic function in the whole domain outside the body:

div grad p = 0 (19)

If this fact is appreciated, the pressure p must be the real part of a complex

"pressure" function _:

p + iq = _(z,_,t) (19a)

Since p and its complex conjugate q carry the same information, it is simple

to conceive that i grad q can replace grad p as a result of conformal mapping.

The raising of equation (15) to flux level is consequently performed by exchange

of p with q:

(15a)

with the understanding that q is an analytic function:

2
div grad q = V2q = 4_°_--_ = 0

8z8_-
(19b)

The equations (15a) and (16a) represent two scalar equations for two unknown

scalar functions _ and _ while q may already serve as an arbitrary analytic

function encountered during the integration.

GENERAL SOIJJTION

The equation (16a) can be integrated by a "potential"

commuting of all differential operators used:

Q because of the

(20)

(21)
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and the new function Q(z,_,t) gets its restriction from the equation (15a) as

follows :

While the second summand is always a square, the first summand would also be a

square of a single operator in the case of perfect flow without any dissipations.

If however dissipations are considered essential, only a fluid with equal dissi-

pation coefficients K = v, the "equi-dissipative" fluid_ allows to set:

= q (22a)

According to the character of the "conjugate to the pressure" q of equa-

tion (19b)_ the new function Q may be written as the operand of four independ-

ent operators as follows:

+ (v - B).v - _v2 + (v + B).v - I\_z/\_/

It promises an integral of four additive contributions:

Q = QI + Q2+ Q3+ Q4 (24)

With a specific adaptation to one operator in each part:

+ : o

2_z-_3 = 0

2_4 =0

(24a)

(24b)

(24c)

(24d)
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Going back to the original unknowns is necessary for the boundary conditions.

The equations (20) and (21) lead back one step to the flux and stream functions,

while equations (17) and (18) add the second step toward the magnetic fields and

velocity fields themselves. The application of (20) and (21) on parts of Q

discloses their specific meaning:

= o (25a)

(_--_.-+ (V + B)'V- vV2)Q 2 = tJ2 + m2 = 0
(25b)

Since the only disturbances possible in fields with vanishing divergences are

vortices; the solution QI indicates co-rotating vorticity of both velocity and

magnetic field travelling with the speed V - B except for dissipation. In the

same manner Q2 is a contribution by contra-rotating vorticity in both fields

travelling with the speed V + B. When the steady flow state is reached; the

vorticity along any line V - B or V + B is uniform except for dissipation

and the flow pattern resembles very much the supersonic two-dimensional flow

(fig. i). The time dependent terms in the above equations are very useful in

indicating the directions in which to employ the two families of waves starting

at the body contour. Playing with this portion of the solution reveals only

(slender) bodies without angle of attack to have neither a sink nor a source of

magnetic flux inside the body. No pressures are created and the lift is always

zero. But this is only the timid approach to studying lift. Pressures result

from the solutions Q3 and 0-4 representing complex analytical functions of

respectively of z.

While reducing Q_ and Q4 to the flux and stream functions according to
equations (21) and (20), it is always allowable to omit the last term in the

operator of equation (20); since analytic functions have no dissipative contribu-

tions:

q_3 = B'VQ3 _3 =(_+ V'V)Q3 (25c)

94 = B.VQ4 44 = (_ + V._7)Q 4 (25d)

For the final steady flow state the relations between the flux and the stream

disturbance are even closer without the first terms for the stream function:

(26a)



•3: vQ3 : (26b)

In the steady state the complex potentials are simply proportional

The velocities derived from these potentials have the same ratio

(26)

(2T)
b_4 = _ v34

V

The singularities from these disturbances are normally vortices hidden inside the

body and outside of the body represent the circulatory motion or magnetic field

responsible for the lift. Both the flow and the magnetic field are not allowed

to show sinks or sources, but a complex multiplier on one potential as in equa-

tion (26) intermixes circulations and sources. The result shown in fig_are 2 is

that the familiar circulation of the velocity field would change into a circula-

tion plus a sink for the magnetic field.

If we reject the solutions Q3 and Q4 except for parallel fields V and

B, because of the unaccountable sink strength, the timid approach to studying

lift would be perfect. The real conclusion is to combine the flux surplus in any

solution QI and Q2 created by finite angle of attack with the flux sink of

Q3 and Q4_ and to get lift, or at least circulation controlled by the angle of

attack. Figures 3 and 4 are prepared to help in finding the flux surplus AMI2

according to angle of attack. With the help of the fishbone pattern inside the

body of figure I in fig-are 3 starting at the leading edge of the body, the book-

keeping of the magnetic flux for any body shape is simple. At zero angle of

attack the surplus is zero, the horizontal to vertical size relations are taken

from the vector diagram V,B to demonstrate that 2V horizontally corresponds

to By vertically (fig. 4). The flux through any horizontal line unit is also

By. The result for a chord c and an angle _ downward amounts to:

A_2 cB o2v = 2Vc_
= YPBy

(28)

With the same coordinates lined with x parallel to V the ratio B/_

changing the velocity circulation r into the magnetic circulation J

magnetic source strength S:

is

and the

-- Bx - iBy_J + iS =--Br =
V v

(29)
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A source strength compensating the surplus of flux _n equation (28) leads to the
circulation E:

r = 2v2---_c p (30)
By

The force created by circulation in the combined hydromagnetic field is composed

of the lifting force iVP and the Lorentz force -iBJ. But instead of the

expected simple current J indicating the magnetic circulation around the body,

the complex multiplication (26) creates J = FB-. The result is:
V

F = ivr- iB(_,)= iVr(l - _=_)
(3l)

The resulting force F is indeed a side force in the manner of the hydrodynamic

lift, but it is reduced by the factor I - (B/V) 2 which indicates vanishing lift

at movements with AlfvSn speed and a lift reversal for sub-AlfvSnic speeds that

is to say too strong magnetic fields.

Concerning the generalized Kutta-joukowsky condition, the case of nonalined

fields V and B seems quite like supersonic flow_ where the leading and the

trailing edge may help to define the lift with precision by being sharpened,

while the angle of attack is in complete control of the circulation.

MOVI_ENT PARALLEL TO MAGNETIC FIELD

While the Kutta-Joukowsky problem is seen to disappear as s_'ch, when the

main magnetic field is under a finite angle with respect to the flow, the alined

motion with (or against) the direction of the magnetic lines is an exception, in

which the two vorticity strips starting at the body surface of figure i degener-

ate to a single streamline behind or in front of the body. The potential flow

disturbance according to the combined solutions Q3 and Q4 makes the magnetic

lines coincide with the steady-state streamlines. Thus the problem in the large

is exactly the familiar hydrodynamic problem and after it is solved_ its stream-

lines are also used as magnetic lines. Only the vanishing imperfections by vis-

cosity and by resistivity must be investigated for differences in the wake

regions.

Mathematically the alinement of both the undisturbed velocity V and the

magnetic field B with the x-axis is of not much immediate consequence. The

general solution of equation (22) still has too many different terms:

+ - +vb_ _ (22b)
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If, however, the steady flow is studied with a semi-perfect fluid in which

-_ will be
either the electric resistivity or the viscosity is zero, one factor _x

found separable:

or

Splitting the first particular solutions QI and Q2 between these factorized

operators as it is done for the equi-dissipative fluid in (24a) and (24b), makes

the second one Q2 uninteresting, while the first one QI has not V - B but a

new convective velocity (V 2 - B2)/V modifying the dissipation of vorticity.

This new convective velocity joins the zero value of V - B but has the added

factor (V + B)/V which doubles for flows with about AlfvSn speed and grows

unlimitedlywith increasing B. Having no immediate check on the nonsteady

build-up process, this new velocity resembles a "phase speed" compared to the

"group speed" V - B of the equi-dissipative fluid. Both extremes of semi-

perfect fluids differ with respect to each other, when the flux function and the

stream function are derived from equations (20) and (21). For vanishing electri-

cal resistivity (superconductivity) there results:

or

_l = _l for _ = 0 (23a)

while for nonviscous fluid it is found that

or

_l =_#l for v = 0 (23b)

The result is that the superconductive fluid conserves the plain similarity

: # = B : V in the boundary layer, while the nonviscous fluid reverses the

ratio inside the boundary layer of moving vorticity.

12



Historically it was the superconductive fluid having only one boundary-
layer solution QI of almost regular behavior on which the reversal of direction
at B = V was first discovered, and it was this result that madethe classical
Kutta-Joukowsky condition look ridiculous for strong magnetic fields B _ V
because of the forward wake.

BOKrNDARYCONDITIONS

While the linearization does not guarantee any disclosure of the lift con-
trolling elements, the proper application of the boundary conditions for van-
ishing imperfections of the fluid on a large variety of examples is still the
foundation for any hopes in that direction. The perfect flow itself determines
the circulation by the angle of attack between sharp leading and trailing edges
only when V and B have different directions. At complete alinement the cir-
culation remains primarily uncontrolled.

For the sake of complete confidence in the linearized solutions of the mag-
netohydrodynamic problem the boundary conditions of the unalined case for the
equi-dissipative fluid maybe discussed first. Figure i showsthat the upper and
the lower side of the body produce one family of vorticity each already in the
case of perfect flow, where the normal but not the tangential velocity at the body
conto1_ can be chosen. For being able to prescribe the tangential velocity inde-
pendently, the second solution of either corotating or contrarotating vorticity is
the only help available relying on the completeness of the solutions. Ordinarily
the convective velocity of the second wavebrands it as an incoming wave with no
information to carry. But one should never underestimate the power of diffusion.
Strong diffusion is able to makeits way against any convective speed though, of
course, with rather steep decay of the vorticity. If, therefore, the boundary
of the body demandsthe second type of vorticity to be present, a thin layer of
the second type is able to exist and it has a tangential velocity according to
V - Bx or V + Bx, respectively (fig. 5). Onepart of the boundary-layer vor-
ticity is able to move in upstream direction when V - Bx is negative. After
running off at the trailing or even the leading edge of the body, the second vor-
ticity type finally joins its own family as a narrow band of laces added to the
former strip in figure 4.

Going now back to the case of alined velocity and magnetic fields, the
original strips of perfect flow vorticity have folded into the body streamline
but the boundary-layer vorticity and the diffusive spread of the edges of the
original strips are still available (fig. 6). The equi-dissipative fluid has
according to this picture two types of (a) corotating and (b) contrarotating
vorticity available with the distinguishable convection speeds V - B and V + B.
Oneof these types, the corotating one - if +V and +B are alined - is even

• .

able to move toward the leading edge of the body and beyond at sub-Alfvenlc

speeds.

The semi-perfect fluids have lost one of the diffusive properties that make

ordinarily the occurrence of discontinuities impossible. Since discontinuities

are now acceptable, the double boundary layer of the equi-dissipative fluid

13



changes to a single boundary layer (fig. 7) with the phase velocity (V 2 - B2)/V.

The reversal is again at AlfvSn speed, but the leading edge is at sub-AlfvSnic

speeds the only one adjacent to a wake. Nonsteady shedding of vortices may still

be expected at the trailing edge, but this process is not available in a factor-

ized differential equation of Q.

CONCLUSION

The two-dimensional magnetohydrodynamic flow past a profile is treated with

linearization for only three special ratios between the imper;$ctions caused by

viscosity and electrical resistivity zero, one, and infinity.__Under these cir-

cumstances the Kutta-Joukowsky problem of lift control is not visible in all its

details. If it were, not the generalized Kutta-Joukowsky conjecture, but its

boundary-layer proof would have been presented. In a sense this affair is again

in the conjectural state and scientists have still the opportunity to risk their

reputation with wrong guesses._ITwo results are unquestionable: Unalined veloc-

ity and magnetic fields have supersonic character, where a sharp leading and a

sharp trailing edge control the lift by their angle of attack. The super-AlvSnic

speed range of the alined fields has the trailing edge as the lift controlling

feature and the trailing edge should be sharp. _

The remaining conjecture is about whether the leading and trailing edges

should be sharp or not sharp at sub-Alfv$nic speeds, where the wake or, at least,

half the wake extends forward of the body. Some voices are for a complete

reversal of all familiar incompressible or subsonic relations and ask for a sharp

leading edge as the means of lift control. One word of caution may be added,

that the former suction force on a sharp trailing edge supporting separation has

changed to a compression force with a blunting tendency for materials of finite

strength.
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